Search results for "Tetragonal crystal system"

showing 10 items of 215 documents

Tailoring the anomalous Hall effect of SrRuO$_3$ thin films by strain: a first principles study

2021

Motivated by the recently observed unconventional Hall effect in ultra-thin films of ferromagnetic SrRuO$_3$ (SRO) we investigate the effect of strain-induced oxygen octahedral distortion in the electronic structure and anomalous Hall response of the SRO ultra-thin films by virtue of density functional theory calculations. Our findings reveal that the ferromagnetic SRO films grown on SrTiO$_3$ (in-plane strain of $-$0.47$\%$) have an orthorhombic (both tilting and rotation) distorted structure and with an increasing amount of substrate-induced compressive strain the octahedral tilting angle is found to be suppressed gradually, with SRO films grown on NdGaO$_3$ (in-plane strain of $-$1.7$\%$…

010302 applied physicsCondensed Matter - Materials ScienceMaterials scienceCondensed matter physicseducationGeneral Physics and AstronomyThermal fluctuationsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyElectronic structure021001 nanoscience & nanotechnology01 natural sciencesTetragonal crystal systemMagnetizationCondensed Matter::Materials ScienceFerromagnetismHall effect0103 physical sciencesddc:530Orthorhombic crystal systemBerry connection and curvature0210 nano-technology
researchProduct

Tetragonal Heusler Compounds for Spintronics

2013

With respect to the requirements of spin torque transfer (STT) materials, one the most promising materials families are the tunable tetragonal Heusler compounds based on Mn2YZ (Y=Co,Fe,Ni,Rh,...; Z=Al, Ga, Sn). They form the inverse cubic Heusler structure with three distinct magnetic sublattices, which allows a fine tuning of the magnetic properties. Starting with the stoichiometric Mn3Ga compound, we explored the complete phase diagram of Mn3-xYxZ (Y=Co, Fe, Ni and Z=Ga ). All series exhibit thermally stable magnetic properties. As we demonstrate, Mn3-xFexGa series, which are tetragonal over the whole range of compositions, are good as hard magnets, whereas magnetically more weak Mn3-xNix…

010302 applied physicsMaterials scienceCondensed matter physicsSpintronicsSpin-transfer torque02 engineering and technologyCrystal structure021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsTetragonal crystal systemFerromagnetismMagnet0103 physical sciencesElectrical and Electronic Engineering0210 nano-technologyStoichiometryPhase diagramIEEE Transactions on Magnetics
researchProduct

Structural, microstructural and dielectric studies in multiferroic LaSrNiO4-δ prepared by mechanical milling method

2016

Abstract The solid solution LaSrNiO 4-δ has been successfully prepared by a rapid method combining mechanical milling and heat treatment. The structure and microstructure transformations were characterized by X-ray powder diffraction, scanning and transmission electron microscopy. The dielectric property was also investigated. After 10 h of milling and 8 h of heat treatment at 1300 °C, X-ray diffraction analysis revealed LaSrNiO 4-δ single phase, exhibiting tetragonal structure with space group of I4/mmm. This result was confirmed by using the ED pattern for sample using the [001] orientation. The corresponding lattice images show the compound to be well ordered, indicating the absence of s…

010302 applied physicsMaterials scienceMechanical EngineeringMetals and Alloys02 engineering and technologyDielectricAtmospheric temperature range021001 nanoscience & nanotechnologyMicrostructure01 natural sciencesCrystallographyTetragonal crystal systemMechanics of Materialsvisual_art0103 physical sciencesMaterials Chemistryvisual_art.visual_art_mediumCeramicCrystalliteComposite material0210 nano-technologyPowder diffractionSolid solutionJournal of Alloys and Compounds
researchProduct

Improve the dielectric properties of PrSrNi0.8Mn0.2O4 compounds by longer mechanical milling

2018

Abstract Structural and dielectric properties of PrSrNi 0.8 Mn 0.2 O 4 ceramics elaborated by a rapid method combining mechanical milling and heat treatment were studied for the first time. The raw materials are milled at different times ( t mil  =  0, 5, 10, 20 and 30 h) and annealed at 1300 °C for 8 h to produce a revealed PrSrNi 0.8 Mn 0.2 O 4 single phase, exhibiting tetragonal structure with space group I 4/ mmm . This result was confirmed by using the TEM/ED pattern for sample milled at 30 h using the [001] orientation. The corresponding lattice images show a well-ordered compound, indicating the absence of stacking faults and the growth of the crystallites. Giant dielectric response …

010302 applied physicsMaterials scienceMechanical EngineeringMetals and AlloysStacking02 engineering and technologyActivation energyDielectric021001 nanoscience & nanotechnology01 natural sciencesTetragonal crystal systemCrystallographyMechanics of MaterialsLattice (order)visual_art0103 physical sciencesMaterials Chemistryvisual_art.visual_art_mediumDielectric lossCeramicCrystalliteComposite material0210 nano-technologyJournal of Alloys and Compounds
researchProduct

X-ray and dielectric characterization of Co doped tetragonal BaTiO3 ceramics

2016

ABSTRACTThe crystal structure modifications of BaTiO3 induced by cobalt doping were studied. The polycrystalline (1 − x)BaTiO3 + xCo2O3 samples, with x ≤ 10 wt.%, were prepared by high temperature sintering conventional method. According to X-ray phase and structural characterization, performed by full-profile Rietveld refinement technique, all synthesized samples showed tetragonal symmetry perovskite structure with minor amount of parasitic phases. Pure single-phase composition has been detected only in the low level of doping BaTiO3. It was indicated that substitution of Co for the Ti sites in the (1 − x)BaTiO3 + xCo2O3 series led to decrease of tetragonality (c/a) of the BaTiO3 perovskit…

010302 applied physicsMaterials scienceRietveld refinementDopingchemistry.chemical_element02 engineering and technologyCrystal structureDielectric021001 nanoscience & nanotechnology01 natural scienceschemistry.chemical_compoundCrystallographyTetragonal crystal systemchemistry0103 physical sciencesBarium titanateGeneral Materials ScienceCrystallite0210 nano-technologyInstrumentationCobaltPhase Transitions
researchProduct

Enhancement of the dielectric response through Al-substitution in La1.6Sr0.4NiO4 nickelates

2016

The structures and dielectric properties of La1.6Sr0.4Ni1−xAlxO4 (x = 0, 0.2 and 0.4) ceramics elaborated using the Pechini method were studied for the first time. The same unique tetragonal phase was found in all compounds. The lattice parameters were found using Rietveld refinement. The surface morphology characterization and elemental analysis of these samples were respectively carried out using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). A giant dielectric response was observed in these ceramics, and one dielectric relaxation was found. The substitution of nickel with aluminum results in a colossal dielectric constant value (>106). The dielectric l…

010302 applied physicsMaterials scienceScanning electron microscopeRietveld refinementGeneral Chemical EngineeringAnalytical chemistrychemistry.chemical_elementMineralogy02 engineering and technologyGeneral ChemistryDielectric021001 nanoscience & nanotechnology01 natural sciencesTetragonal crystal systemNickelchemistryvisual_art0103 physical sciencesvisual_art.visual_art_mediumDielectric lossCeramic0210 nano-technologySpectroscopyRSC Advances
researchProduct

Raman spectra and anomalies of dielectric properties and thermal expansion of lead-free (1−x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramics

2016

ABSTRACTThermal expansion, Raman and dielectric properties of the lead-free (1−x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramic solid solutions, fabricated by the conventional solid-state reaction method, were investigated. The Sr-doping results in an increase of the dielectric permittivity, broadening of the permittivity maximum, enhancement of the relaxation near depolarization temperature, broadening of the Raman bands and shift of all anomalies toward lower temperatures. The observed effects are attributed to an increase of the degree of cationic disorder and enhancement of the relaxor-like features. Anomalies in the thermal expansion strain were observed at the temperatures corre…

010302 applied physicsPermittivityPhase transitionMaterials scienceCondensed matter physicsRelaxation (NMR)02 engineering and technologyDielectric021001 nanoscience & nanotechnology01 natural sciencesThermal expansionTetragonal crystal systemsymbols.namesakePhase (matter)0103 physical sciencessymbolsGeneral Materials Science0210 nano-technologyRaman spectroscopyInstrumentationPhase Transitions
researchProduct

Relaxation of polarization in (K0.5Na0.5)(Nb0.93Sb0.07)O3 ferroelectric ceramics modified by BaTiO3

2017

ABSTRACTA study of low-frequency relaxation of polarization in conventionally prepared ceramic compounds of (1-x)(K0.5Na0.5)(Nb0.93Sb0.07)O3+xBaTiO3+0.5mol.%MnO2 (x = 0.02, 0.04) examined over a wide temperature range is reported. Anomalous behavior of the temperature dependence of the coercive field Ec(T) is detected in the temperature range of the orthorhombic to tetragonal phase transition. The observed features of polarization are assigned to dynamics of the domain structure at the temperature range of phase coexistence.

010302 applied physicsPhase transitionMaterials scienceCondensed matter physicsFerroelectric ceramics02 engineering and technologyCoercivityAtmospheric temperature range021001 nanoscience & nanotechnologyCondensed Matter PhysicsPolarization (waves)01 natural sciencesElectronic Optical and Magnetic MaterialsTetragonal crystal systemNuclear magnetic resonancevisual_art0103 physical sciencesvisual_art.visual_art_mediumOrthorhombic crystal systemCeramic0210 nano-technologyFerroelectrics
researchProduct

Correlation between in situ structural and optical characterization of the semiconductor-to-metal phase transition of VO2 thin films on sapphire

2020

A detailed structural investigation of the semiconductor-to-metal transition (SMT) in vanadium dioxide thin films deposited on sapphire substrates by pulsed laser deposition was performed by in situ temperature-dependent X-ray diffraction (XRD) measurements. The structural results are correlated with those of infrared radiometry measurements in the SWIR (2.5-5 μm) and LWIR (8-10.6 μm) spectral ranges. The main results indicate a good agreement between XRD and optical analysis, therefore demonstrating that the structural transition from monoclinic to tetragonal phases is the dominating mechanism for controlling the global properties of the SMT transition. The picture that emerges is a SMT tr…

010302 applied physicsPhase transitionMaterials scienceTransition temperatureAnalytical chemistryPulsed laser depositionphase change material; VO202 engineering and technologyVO2 thin films021001 nanoscience & nanotechnology01 natural sciencesSettore ING-INF/01 - ElettronicaPulsed laser depositionTetragonal crystal systemVO20103 physical sciencesSapphireThermal hysteresisGeneral Materials ScienceCrystalliteThin film0210 nano-technologyphase change materialMonoclinic crystal systemSemiconductor-to-metal (SMT) transition
researchProduct

Structure and dielectric properties at phase transition of Na1/2Bi1/2TiO3-BaTiO3 solid solutions

2016

ABSTRACTPhase coexistence region is studied by x-ray diffraction for Na1/2Bi1/2TiO3-BaTiO3 solid solutions in the tetragonal phase side from the morphotropic phase boundary. The first order ferroelectric phase transition, determined from a jump in the temperature dependence of dielectric permittivity, is located inside the coexistence region of cubic and tetragonal phases and is below the temperature, where tetragonality disappears. At low BaTiO3 concentrations phase transition into ferroelectric state at cooling is slowly approached in time and is smeared over large temperature range. Rietveld method, applied for more precise evaluation of phase content, reveals large local deformations in…

010302 applied physicsQuantum phase transitionPhase boundaryPhase transitionMaterials scienceCondensed matter physicsFerroics02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesFerroelectricityElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceTetragonal crystal systemPhase (matter)0103 physical sciences0210 nano-technologyFerroelectrics
researchProduct